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Investigations of potential bias in the
estimation of k using Pradel’ s (1996) model
for capture- recapture data

JAMES E. HINES & JAMES D. NICHOLS, US Geological Survey, Patuxent

Wildlife Research Center, USA

abstract Pradel’s (1996) temporal symmetry model permitting direct estimation and

modelling of population growth rate, k i , provides a potentially useful tool for the study of

population dynamics using marked animals. B ecause of its recent publication date, the

approach has not seen much use, and there have been virtually no investigations directed

at robustness of the resulting estimators. Here we consider several potential sources of bias,

all motivated by speci® c uses of this estimation approach. We consider sampling situations

in which the study area expands with time and present an analytic expression for the bias

in k Ã i We next consider trap response in capture probabilities and heterogeneous capture

probabilities and compute large-sample and simulation-based approximations of resulting

bias in k Ã i . These approximations indicate that trap response is an especially important

assumption violation that can produce substantial bias. Finally, we consider losses on

capture and emphasize the importance of selecting the estimator for k i that is appropriate

to the question being addressed. For studies based on only sighting and resighting data,

Pradel’s (1996) k Ã i¢ is the appropriate estimator.

1 Introduction

Much of the estimation of parameters based on capture- recapture data from open

populations can be viewed as conditional on particular entries in each capture

history. Survival rate is estimated by conditioning on the initial captures of animals

and modelling the capture history with respect to subsequent sampling periods

(e.g. Cormack, 1964; Lebreton et al., 1992). Reverse-time modelling conditions
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on the ® nal capture of an individual and models of the prior capture history can

provide information about the recruitment of new animals into the population

(Pollock et al., 1974; Pradel, 1996). Speci® cally, the proportion of the population

that is `old’ (also members of the population in the previous sampling period) is

the reverse-time analogue of survival rate, and is termed the `seniority parameter’

by Pradel (1996). In addition to reverse-time modelling, Pradel (1996) introduced

a likelihood for open-population capture- recapture data that models the entire

capture history and is based on the temporal symmetry of capture- recapture data.

Standard-time and reverse-time approaches are combined in the same likelihood,

permitting inference about population growth rate ( k i 5 N i +1/N i , where N i denotes

abundance at time i), a parameter that integrates recruitment and survival.

Pradel’s (1996) paper is relatively recent, and his proposed estimation method-

ology has not seen a great deal of use, at least until this particular conference. In

addition to being only sparsely used, Pradel’ s (1996) development has not led to

the sorts of investigations of estimator robustness (e.g. Carothers, 1973, 1979;

Gilbert, 1973) that followed the publication of the Jolly- Seber model ( Jolly, 1965;

Seber, 1965). We have limited experience with Pradel’ s (1996) temporal symmetry

approach to estimating k i , but we have used it with capture- recapture data for

northern spotted owls, Strix occidentalis caurina (Franklin et al., 1999), meadow

voles, Microtus pennsylvanicus (Nichols et al., 2000), and roseate terns, Sterna

douga llii (Nichols & Hines, this issue), and with capture- resighting data for snail

kites, Rostrhamus sociabilis (Dreitz et al., this issue). In two of these studies (Franklin

et al., 1999; Dreitz et al., this issue), concerns about the possibility of obtaining

biased estimates of k i led us to investigate possible bias resulting from various

sources. Here, we report the results of these investigations. Although the investi-

gations are tailored to the speci® c sampling situations that motivated them, we

believe that most of the results are of general interest and should be relevant to

other users of this estimation approach.

2 Assumptions

The following assumptions are typically listed for the Jolly- Seber model (e.g.

Seber, 1982; Pollock et al., 1990) and are required for reasonable estimates of

abundance, N i .

(1) Every animal (marked and unmarked) present in the population at sampling

period i has the same probability p i of being captured or sighted.

(2) Every marked animal present in the population immediately following the

sampling in period i has the same probability } i of survival until sampling

period i + 1.

(3) Marks are neither lost nor overlooked, and are recorded correctly.

(4) Sampling periods are instantaneous (in reality they are very short periods)

and recaptured animals are released immediately.

(5) All emigration from the sampled area is permanent.

(6) The fate of each animal with respect to capture and survival probability is

independent of the fate of any other animal.

Pradel’ s (1996) temporal symmetry approach also assumed homogeneity with

respect to the reverse-time parameters, c i , the probability that an animal present in

the sampled population at period i is an `old’ animal that was also present in

period i 2 1.
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3 Consequences for Ã̧
i of assumption violations

3.1 Expansion of study area over time

3.1.1 B ackground. When Pradel’ s (1996) approach is parameterized with k i , and

when interest is focused on the rate of change in population size, then biological

interpretations of resulting estimates depend on aspects of study design. For

example, one potential problem that arose during consideration of spotted owl

sampling involves expansion of some of the study areas over time (Franklin et al.,

1999). The sampling situation envisioned begins with a well-de® ned study area.

However, while sampling the study area, investigators may locate birds near the

de® ned study area, yet slightly beyond study area boundaries. As such birds are

detected, they are added to the marked sample, and recapture eþ orts in subsequent

years include visits to these particular territory locations, despite the fact that they

lie outside the initial study area boundaries. Thus, the investigators are essentially

sampling a larger area, and the additional owls within this additional area, as the

study progresses.

This sampling situation does not produce bias, in the sense that the estimator of

k i is not performing as it was intended. Instead, the area being sampled is increasing,

so the estimated population change is the result of two conceptually distinct

processes. The ® rst process involves changes in the number of birds in the sampled

area; this is the change of interest and the one to which we would like k Ã i to apply.

The second process involves expansion of the study area and the increase in the

number of birds exposed to sampling that results from this expansion.

3.1.2 B ias expressions. If we view the change in the number of birds in the

originally de® ned study area as the true quantity of interest, then we can consider

the `bias’ in k Ã i associated with study area expansion. Let N i denote the number of

animals exposed to sampling eþ orts in the original study area. Then, the true

parameter of interest is k i 5 N i +1 /N i . Let N i¢ be the number of birds exposed to

sampling e þ orts during year i that were not exposed to sampling eþ orts during

year i 2 1 (these birds are associated with the new area sampled in year i). If we

view k Ã i as the rate of increase estimated from sampling e þ orts, then we should be

able to approximate relative bias in k Ã i as:

B ias( k Ã i) 5 E( k Ã i) 2 k i »
N i +1 + N ¢i +1

N i

2
N i + 1

N i

5
N ¢i +1

N i

(1)

If we de® ne relative bias as the ratio of bias to the true parameter value, then

relative bias in k Ã i is given by:

Rbias( k Ã i) 5
E( k Ã i) 2 k i

k i

»
N ¢i +1

N i +1

(2)

The interpretation of (2) is that the relative bias of k Ã i is given by the proportional

increase in the number of birds exposed to sampling e þ orts resulting from the

expansion of study area in time i + 1, relative to the area sampled in time i.

3.2 Permanent trap response in capture probability

3.2.1 B ackground. Spotted owl sampling also motivated an investigation of

possible bias in k Ã i induced by permanent trap response. A standard approach to
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owl sampling involves a change in sampling once a territorial bird has been

encountered for the ® rst time. In all years following initial location and capture,

investigators return to the speci® c territory (sometimes multiple times) ensuring

that capture probability is very high for marked birds. However, it is likely that

capture probability for birds that have not been previously marked will be lower,

perhaps substantially so. The term `trap response’ was originally intended to apply

to an animal’ s response to being captured (e.g. Seber, 1982), whereas application

of the term here applies to a change in capture probability induced by investigator

behaviour, rather than bird behaviour. We retain the terminology, because it

re¯ ects a diþ erence in capture probability between birds that have, and have not,

been previously marked, and this diþ erence in capture probability is the quantity

of relevance here. With regard to this investigation, the important point is that

the inferences about bias depend only on the diþ erences between capture prob-

abilities of marked and unmarked animals and not on the reasons underlying the

diþ erences.

The in¯ uence of permanent trap response in the standard Cormack- Jolly- Seber

modelling context has been investigated and shown to induce no bias in survival

estimates (Nichols et al., 1984). This absence of bias is easily explained, as survival

estimates are conditional on animals that are captured, so all modelled capture

probabilities correspond to marked birds. Estimates of population size under the

Jolly- Seber model, however, are biased in the face of permanent trap response, as

the diþ erence in capture probability between marked and unmarked causes

predictable problems (e.g. see Nichols et al., 1984).

Our initial intuition about this problem led us to believe that k Ã i would likely be

positively biased in the face of trap response. The suggestion emerges from a

consideration of the natural parameterization of the temporal symmetry model

using the c i parameter de® ned above (Pradel, 1996). The relationship between

the k -parameterization and the c -parameterization can be written as:

k i 5
} i

c i +1

(3)

where these parameters have been de® ned above (see discussion in Section 4.1).

Although the survival estimate under the Cormack- Jolly- Seber model is unbiased

in the face of permanent trap response, we believe that the c Ã i are likely to be

negatively biased.

As noted above, the c Ã i estimate the fraction of animals present at i that were

also present at time i 2 1. One way to estimate the actual number of animals

caught in period i that were present in period i 2 1 is to divide the number

observed in both periods by the estimated capture probability at time i 2 1, pÃ i 2 1

(note that the maximum likelihood estimation does not actually work in this way,

but this is an ad hoc estimation approach that can perhaps provide insight into

the process). However, most of the information for estimating pÃ i 2 1 comes from

recaptures and not from new captures of unmarked animals. If recapture probabil-

ity is really larger than capture probability of unmarked animals, then the pÃ i 2 1 will

apply approximately to animals marked before i 2 1(M i 2 1 ) but not to the remainder

of animals available for capture at i 2 1 (the N i 2 1 2 M i 2 1 unmarked animals

available at i 2 1). When pÃ i 2 1 is too large for some fraction of the animals present

at i 2 1, the estimated number of these animals will be too small, as will the

estimates of c i . Because of the relationship in equation (3), the k Ã i will show

positive bias.
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3.2.2 Methods of bias approximation. We examined the in¯ uence of permanent

trap response on estimates of k i using both large-sample analytic approximations

and computer simulation (e.g. Nichols et al., 1981; Burnham et al., 1987). The

large-sample approximations were obtained by computing the expected value of

each observable capture history under a speci® ed set of parameter values. We

considered the situation of ten sampling periods. We used 100 000 or 200 000

animals as a population size in order to ensure su ý ciently large numbers of animals

exhibiting each capture history to permit a reasonable approximation (because we

submitted integer numbers to the data-analytic program, MARK, see White &

Burnham, 1999). Expected population size was constant over time (i.e. we assumed

true k i 5 1), and this was accomplished by adding to the population each time

period a number of new unmarked animals equal to the number of expected deaths

(additions equalled N(1 2 } ), where N is the population size and } is the local

survival probability). We used a survival rate of } 5 0.85 for all approximations.

The expected values of the capture histories were submitted as data to program

MARK, and the resulting parameter estimates are approximations to E( k Ã i). We

approximated E( k Ã i) under three diþ erent models, model ( } t , p., k .), model ( } t , p.,

k t), and model ( } t , pt , k t ), where the subscript t denotes temporal variation and

the `.’ subscript indicates a parameter that is constant over time.

In addition to these large-sample approximations, we used computer simulation

to approximate E( k Ã i) for small population and sample sizes similar to those

encountered in spotted owl studies. In these simulations we generated capture

history data with individual survival and capture both treated as stochastic processes

(Bernoulli trials). For most simulations, we used 100 as a population size. Additions

of new animals were treated in a deterministic (rather than stochastic) manner, as

we added the number of individuals each time period needed to compensate for

the expected number of deaths (N(1 2 } ), where N is the initial population size).

Again, a survival rate of } 5 0.85 was used in all simulations, and E( k ) 5 1. For

each scenario, we conducted 100 iterations and estimated the expected value of k Ã i

as the mean of the 100 diþ erent parameter estimates. We approximated E( k Ã i) in

this manner for two models, model ( } t , p., k .), and model ( } t , p t , k t ). As in the

large-sample approximations, we considered the case of ten sample periods.

We investigated several diþ erent scenarios for trap response by specifying diþ er-

ent values for the capture probabilities of unmarked (p) and previously marked (c)

birds. We set the capture probability for previously marked birds as c 5 0.8 in all

scenarios. We investigated values for capture probability of unmarked birds ranging

from p 5 0.1 to 0.9 in increments of 0.1. These diþ erent scenarios included extreme

levels of `trap-happy’ response (e.g. p 5 0.1, c 5 0.8) as well as an example of a

`trap-shy’ response ( p 5 0.9, c 5 0.8), in order to include the situation of marked

owls avoiding capture eþ orts.

3.2.3 Results of bias approximations. The values of E( k Ã i) obtained using large-

sample approximations and comupter simulation showed good agreement both for

the case of no trap response (underlying model assumptions were met, Fig. 1) and

substantial trap-happy response (Fig. 2). Because of this agreement, we present

primarily large-sample approximations. As predicted, E( k Ã ) under model ( } t , p., k .)

shows a positive bias in the presence of a trap-happy response. The approximate

relative bias of k Ã ranged from about 0.10 for p 5 0.1 and c 5 0.8 to < 0.01 for

p 5 0.7 and c 5 0.8. The trap-shy response of p 5 0.9 and c 5 0.8 yielded a small

negative bias in k Ã .
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Fig. 1. Comparison of computer simulation (based on 100 iterations) and large-sample approximations

for E( k Ã i) under model ( } t , pt , k t ) in the situation where model assumptions are met. Approximations

correspond to the following underlying parameter values: k 5 1, } 5 0.85, p 5 0.8. There were ten

sample periods, and population size in the simulations was 100 birds.

Fig. 2. Comparison of computer simulation (based on 100 iterations) and large-sample approximations

for E( k Ã i) under model ( } t , pt , k t ) in the case of trap response. Approximations correspond to the

following underlying parameter values: k 5 1, } 5 0.85, p 5 0.2, c 5 0.8. There were ten sample periods,

and population size in the simulations was 100 birds.

The time-speci® c approximations for E( k Ã i) showed an interesting (and potentially

misleading) temporal trend, as E( k Ã i) decreased over time (Fig. 3). E( k Ã i) was largest

in sampling period 2 (relative bias of approximately 0.28 for k Ã 2 in the case of

p 5 0.1 and c 5 0.8) and decreased monotonically to values near 1 for later sampling

periods (Fig. 3). As was the case for the constant-parameter model, bias was not

substantial for small levels of trap response, although some evidence of a trend was

present for all degrees of trap response investigated. The trend in E( k Ã i) was positive

in the case of a trap-shy response.
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Fig. 3. Large-sample approximations for E( k Ã t) under model ( } t , pt , k t) in the case of trap response with

ten sample periods. Approximations correspond to the following underlying parameter values: k 5 1,

} 5 0.85, c 5 0.8, p 5 (0.1, 0.2, . . . , 0.9).

An a posteriori explanation for the trend in E( k Ã i) involves changes in the relative

numbers of marked and unmarked animals in the population through time. The

intuitive explanation about the expectation of positive bias in k Ã i under a trap-happy

response involved the inappropriate application of capture probability parameters

that were based primarily on recaptures to unmarked animals. Unmarked animals

comprise a larger proportion of the population in the early periods, whereas marked

animals come to dominate the later periods. The greater bias in the earlier time

periods is consistent with this line of reasoning.

3.3 Heterogeneous capture probabilities

3.3.1 B ackground. One of the ® rst problems investigated for the Jolly- Seber

model estimators involved heterogeneous capture probabilities among individuals

(Carothers, 1973, 1979; Gilbert, 1973). In this situation, diþ erent individuals have

diþ erent capture probabilities, violating assumption 1 underlying the Jolly- Seber

model. Although we had no strong intuition about the likely eþ ects of heterogeneous

capture probabilities on estimates of k i , we guessed that eþ ects might be relatively

minor. Our reasoning was that although heterogeneity produces substantial negative

bias in individual estimates of population size, parameters (such as k i) re¯ ecting

ratios of population size should not be badly aþ ected. This prediction is consistent

with the results of Skalski & Robson (1992) about estimates of relative abundance

based on Lincoln- Petersen estimates of population size.

3.3.2 Methods of bias approximation. As with the numerical investigations of trap

response, we used both large-sample approximations and computer simulation to

investigate E( k Ã i). We modelled heterogeneity using a simple 2-group distribution

(e.g. see Carothers, 1973). The large-sample approximations were computed in

the same general manner as for trap response. Instead of having diþ erent capture

probabilities corresponding to marked /unmarked status, we generated expected



580 J. E. Hines & J. D. Nichols

numbers of animals in the diþ erent capture histories using one capture probability

(p
1) for a constant population of 100 000 birds and a diþ erent capture probability

(p
2) for a diþ erent population of 100 000 birds. These capture probabilities

remained the same for birds throughout their lives and did not change with mark

status, for example. The number of additions to the population each year was set

equal to the expected number of deaths (N(1 2 } )), so the entire population of

200 000 birds remained approximately constant over time ( k 5 1). These analyses

were patterned loosely after spotted owl populations, so a survival rate of } 5 0.85

was used for these approximations, just as for the trap response investigations. The

capture histories for the two groups were combined to yield expected capture

histories with heterogeneous capture probabilities for the total population of

200 000 birds. We again considered studies with ten annual sample periods. As in

the investigation of trap response, we approximated E( k Ã i) under three diþ erent

models, model ( } t , p., k .), model ( } t , p., k t), and model ( } t , pt , k t).

In the computer simulation approach, we used 50 birds in each of the two

groups (the groups de® ned by capture probabilities p
1 and p

2 ) and treated individual

survival and capture as Bernoulli trials. For each subgroup, we added new

individuals to equal the expected number of deaths in the group each time period

(N(1 2 } )), so E( k ) 5 1. The capture histories for the two groups were combined

to yield the data for a heterogeneous population of 100 birds. We estimated k

under two models, ( } t , p., k .) and ( } t , p t , k t ).

We investigated diþ erent scenarios re¯ ecting diþ erent degrees of heterogeneity.

We retained p
1

5 0.9 for the high-p group in all scenarios, and we set p
2

5 0.1,

0.2, . . . , 0.9, for the low-p group. We ® rst compared the computer simulation and

large-sample approximations of E( k Ã i ) for the scenario of p
1

5 0.9, p
2

5 0.2 under

model ( } t , p t , k t ). The approximations using these two alternative approaches

showed good agreement with a positive bias ( ~ 0.05) in time 2 and a negative bias

( ~ 0.05) in time 8.

3.3.3 Results of bias approximations. Large-sample approximations for E( k Ã ) under

model ( } t , p., k .) showed no evidence of bias (i.e. E( k Ã ) 5 1.00), indicating no

in¯ uence of heterogeneous capture probabilities on estimates of k under this model.

However, the time-speci® c estimates of k under model ( } t , p t , k t ) did show evidence

of bias, with approximations of bias ranging from 2 0.05 to 0.05 for the time-

speci® c k Ã i (Fig. 4). Interestingly, the time-speci® c approximations for E( k Ã i) showed

a temporal trend, as E( k Ã i) decreased over time (Fig. 4). The magnitude of bias was

dependent on the degree of heterogeneity, although the greatest bias was not

observed for the largest degree of heterogeneity. Instead, the greatest bias was

associated with the scenario of p
1

5 0.9, p
2

5 0.3, whereas the scenario of p
1

5 0.9,

p
2

5 0.1 showed smaller bias. An a posteriori explanation for this diþ erence, is that

when the low-p group has a su ý ciently low capture probability, these birds provide

a small contribution to the capture history data, leaving most data corresponding

to birds in the high-p group.

Heterogeneous capture probabilities do not appear to present as substantial a

problem as does permanent trap response in capture probabilities. Bias in k Ã appears

to be negligible under model ( } t , p., k .), and bias in the k Ã i under model ( } t , pt , k t)

is relatively small, yet showed evidence of a temporal trend in bias of k Ã i . Clearly,

these inferences are restricted to the exact situations that we investigated, and we

encourage additional work with diþ erent scenarios.
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Fig. 4. Large-sample approximations for E( k Ã t) under model ( } t , pt , k t) in the case of heterogeneous

capture probabilities with ten sample periods. Approximations correspond to the following underlying

parameter values: k 5 1, } 5 0.85, p
1

5 0.9, p
2

5 (0.1 , 0.2, . . . , 0.9).

3.4 Combined eþ ects of trap response and heterogeneity

It is certainly possible that permanent trap response and heterogeneity could be

operating simultaneously in a sampled population. Thus, we investigated a small

number of possible scenarios, again based loosely on spotted owls. Speci® cally, we

envisioned two groups of birds (1 and 2) with diþ erent capture probabilities for

unmarked (p
1 , p

2) and marked (c
1 , c

2 ) birds within each group. We investigated

this possibility using large-sample approximations as described above. We retained

a constant population of 100 000 in each group of birds and used annual survival

probabilities of 0.6, 0.7, 0.8 and 0.9. We computed approximations for E( k Ã i) under

models ( } t , p., k .), ( } t , p., k t ) and ( } t , p t , k t ).

We left capture probabilities for group 2 the same for all scenarios at p
2

5 0.4,

c
2

5 0.9. We then de® ned diþ erent scenarios using the following capture probabili-

ties for members of group 1: p
1

5 0.1, c
1

5 0.6; p
1

5 0.2, c
1

5 0.7; p
1

5 0.3, c
1

5 0.8;

p
1

5 0.4, c
1

5 0.9; and p
1

5 0.45, c
1

5 0.95. Large-sample approximations for E( k Ã )

under model ( } t , p., k .) show a positive bias of approximate magnitudes 0.05 to

0.06 for survival of 0.85, similar to those observed under some degrees of trap

response (Fig. 5). Large-sample approximations for E( k Ã i) under model ( } t , pt , k t)

show a temporal trend with decreases over time (Fig. 6). Estimates of survival were

slightly positively biased, while estimates of seniority were more negatively biased,

which would explain the positive bias in k .

4 Consequences for Ã̧
i of ignoring losses on capture

4.1 B ackground

All animals are not always released following capture in capture- recapture studies.

Reasons for failure to release an animal vary and can involve trap death, handling

death, or removal by the investigator for experimental reasons. In resighting studies

that focus on abundance estimation, unmarked animals must be counted at each
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Fig. 5. Large-sample approximations for E( k Ã ) under model ( } 1 , p., k ) in the case of simultaneous trap

response and heterogeneity with ten sample periods. Approximations correspond to the following

underlying parameter values: k 5 1, } 5 (0.9-top line, 0.8, 0.7, 0.6-bottom line). Group 2 capture

probabilities remained the same for each scenario at p
2

5 0.4, c
2

5 0.9, and capture probabilities for

members of group 1 were p
1

5 (0.55 2 0.95), c
1

5 p
1 + 0.5.

Fig. 6. Large-sample approximations for E( k Ã i ) under model ( } t , pt , k t ) in the case of simultaneous trap

response and heterogeneity with ten sample periods. Approximations correspond to the following

underlying parameter values: k 5 1, } 5 0.85. Group 2 capture probabilities remained the same for each

scenario at p
2

5 0.4, c
2

5 0.9, and capture probabilities for members of group 1 were p
1

5 0.1, c
1

5 0.6;

p
1

5 0.2, c
1

5 0.7; p
1

5 0.3, c
1

5 0.8; p
1

5 0.4, c
1

5 0.9; and p
1

5 0.45, c
1

5 0.95.

sampling occasion but must be treated as not released, as the investigator has no

opportunity to identify them in subsequent periods. The study of Dreitz et al. (this

issue) used resighting data on snail kites to estimate both abundance and population

growth rate and motivated our interest in this topic. Speci® cally, we were interested

in estimating k i using the temporal symmetry modelling approach of Pradel (1996).

Consideration of animals that are not released requires that we distinguish
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between the moments just before and just following sampling in each period i.

De® ne N
2
i and N +

i respectively as abundance just before and after sampling period

i. De® ning di as the number of animals that are caught at i and not released back

into the population following sampling, we can write N +
i 5 N

2
i 2 d i . We denote as

g i the probability that an animal captured in period i survives trapping and handling

and is released back into the population. The relationship between N
2
i and N +

i

can be written as:

N +
i 5 N

2
i [1 2 p i(1 2 g i)] (4)

Equation (4) simply indicates that a member of N
2
i must survive the possibility of

being caught and removed from the population in order to become a member of N +
i .

Expressions for population growth rate can be obtained by considering two

alternative ways of writing the expected number of animals alive in two successive

sampling occasions. Based on forward-time and reverse-time modelling, we can

write this expectation as N +
i } i » N

2
i +1 c i +1 (see Pradel, 1996). Solving this approxi-

mate equality yields the expression for population growth rate presented in equa-

tion (3):

k i 5 N
2
i +1 /N +

i

(5)
» } i /c i +1

Equation (5) is relevant to biological changes in the population occurring between

the two sampling periods, but does not account for animals that are captured and

not released back into the population. To account for animals not released, Pradel

(1996) suggests the following modi® ed rate of population change ( k i¢ ) that also

incorporates losses of animals during sampling:

k ¢i 5 N
2
i +1 /N 2

i

5 k i(N +
i /N 2

i ) (6)

5
} i(1 2 p i[1 2 g i])

c i + 1

The numerator of equation (6) represents the probability of surviving all mortality

sources (including those associated with trapping and handling), and the k i¢ de® ned

in equation (6) re¯ ects the actual growth in the presence of sampling and trap

mortality.

In the case of a resighting study designed to estimate k i , the unmarked data are

treated as losses on capture, as noted above. Under such a design, the usual

parameter denoting the probability that a captured bird survives the capture

process, g i , now denotes the probability that a randomly selected bird from all

those sighted at time i is a marked bird. Stated diþ erently, g Ã i estimates the

proportion of marked birds among the entire sample of sighted birds. The usual

estimator of k i from equation (5) now estimates nothing of interest, whereas the

estimator (equation (6)) developed to deal with losses on capture (denoted as k i¢ )
estimates the growth rate for the population. Note that the g i are likely to be

relatively small in such resighting studies, leading to potentially large diþ erences

between k i and k i¢ .
The objective of this investigation was to assess the magnitude of bias resulting

from use of inappropriate estimators for k i in cases where not all animals are
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released following capture. Program MARK (White & Burnham, 1999) computes

the estimator for k i that does not allow for losses on capture. However, because of

the many nice features of MARK, it would be tempting to use this program to

estimate k i even in the presence of losses on capture, if the resulting bias was likely

to be small. Thus, one objective was to examine the magnitude of bias in k Ã i

produced by MARK, in the presence of losses on capture. The second objective

was to examine the diþ erence between growth rate estimates produced by the

diþ erent estimators of equations (5) and (6) in order to assess the importance of

the proper choice of estimators.

4.2 Methods of bias approximation

As with the investigations of assumption violations (Section 3), we used large-

sample approximations to investigate the consequences of losses on capture for the

three estimators of k i : the estimators of equations (5) and (6), and the estimator

used in the current version of MARK (White & Burnham, 1999). We used a

population size of 100 000, with constant expectation over the six sampling periods.

Survival rate and capture /resighting probability were constant over time at 0.70

and 0.40, respectively. We investigated various values of g i (probability of being

released, conditional on capture /sighting) ranging from 0.2 to 1.0. New unmarked

animals were added to the population each year in order to replace expected deaths

[N(1 2 } ) (1 2 p(1 2 g ))]. Thus, the true growth rate of the population ( k i¢ ) had

expectation 1, whereas the growth rate resulting from only biological processes and

not sampling ( k i) was > 1. Speci® cally,

k i 5
k ¢i

1 2 p i(1 2 g i )
5

1

1 2 p i (1 2 g i)

The expected numbers of animals in all possible capture histories were input as

data to program MARK and to a GAUSS program written by Hines to compute

k Ã i , k Ã ¢i (see Pradel, 1996).

4.3 Results of bias approximations

Results of large-sample approximations for the entire range of g i values show that

all three estimators yield the same, unbiased estimate of k Ã i 5 1 for the case of all

animals released following capture, g i 5 1 (Fig. 7). Pradel’ s (1996) k Ã i and k Ã i¢ provide

unbiased estimates of their respective parameters, as expected when sample sizes

are larger and all model assumptions are met. Smaller values of g i lead to greater

divergence in the three estimates, as expected. In cases where non-release of

animals is a consequence of trap death or handling mortality, we expect g i to be

large and to approach 1.

In the case of true losses on capture, the investigator may be interested in either

k Ã i (equation (5)) or k Ã i¢ (equation (6)), depending on the question(s) being posed.

However, in the case of a resighting study, then only k Ã i¢ is of interest. The substantial

diþ erence between Pradel’s (1996) k Ã i and k Ã i¢ for the case of small to moderate

values of g i expected to result from resighting studies emphasizes the importance

of focusing on the appropriate estimator k Ã i¢ . The point estimates of g i computed for

snail kites by Dreitz et al. (this issue) ranged from 0.13 to 0.17, and the bias

resulting from incorrect use of k Ã i in that situation would be substantial (Fig. 7).
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Fig. 7. Large-sample approximations for E( k Ã 3) based on estimator developed for use with no losses on

capture, and both estimators ( k Ã i , k Ã i¢ ) of Pradel (1996 ) accounting for losses on capture, where g i

(probability of being released given capture) ranges from 0.2 to 1.0. Approximations correspond to the

following parameter values: k ¢ 5 1, U 5 0.7, p 5 0.4.

5 Discussion

The bias investigations that were focused on consequences of assumption violations

(Section 3) lead to several inferences. The expressions presented in Section 3.1

lead to the simple recommendation to restrict use of this approach for k i estimation

to sampling situations where study area expansion is negligible. In situations where

this expansion has occurred, it may be possible to restrict analyses to a subset of

the data. Perhaps the important thing to remember about this means of estimating

k i is that it estimates the rate of change in abundance of birds exposed to sampling

eþ orts. If this quantity re¯ ects population dynamics of birds, then it will likely be

of interest to us, whereas if it re¯ ects both population dynamics and changes in

sampling (e.g. area expansion), then biological interpretation may be more diý cult.

The investigations presented in Sections 3.2, 3.3 and 3.4 concerned violations

of the assumption of homogeneous capture probabilities. A general observation is

that inferences based on forward-time modelling should not be assumed necessarily

to apply to reverse-time or temporal symmetry approaches. Our speci® c numerical

investigations lead to a greater concern for trap response in capture probabilities

than for heterogeneity. Of particular relevance to the modelling of population

growth is the temporal trend in k Ã i that can be generated by these violations of the

assumption of equal capture probabilities (both trap response and heterogeneity).

Because of this tendency, we believe it prudent to omit from our model set models

that incorporate temporal trends in k i . In many cases, we believe it will be wise to

focus on full time-speci® c models (e.g. [ } t , pt , k t ] and on models with time-

invariant population growth (e.g. [ } t , p , k . ] and [ } t , pt , k . ]). In the case of models

with time-speci® c parameters, it may also be wise to view the initial estimate of

population growth (usually k Ã 2 ) with caution, as this estimate is likely to exhibit

substantially greater bias than any subsequent estimates.

In Section 4, we considered losses on capture and the need to select the
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appropriate estimator for k i when faced with such losses. It is important that

analysts using pre-written software devote adequate thought to the design and

objectives of their studies in order to make informed decisions about computing

and estimation. In the case of sampling designs based solely on sighting and

resighting data, it is especially important to use the appropriate estimator, k Ã i¢ . (The

GAUSS program to compute k Ã i in the presence of losses on capture can be obtained

from JEH.)

We conclude with the obvious recommendation that investigators devote sub-

stantial thought to the design and analysis of studies aimed at estimation of k i . The

investigations reported here were tailored to speci® c sampling situations and

provided results that were useful to us in our own work. We believe that the results

may be useful to others as well (hence this manuscript), but we also urge others to

consider similar exercises aimed at their speci® c studies. As the collective scienti® c

community becomes more familiar with direct estimation of population growth

rate, perhaps the need for these types of simulation studies will diminish, but we

have certainly not approached such a level of familiarity yet.

Acknowledgements

We specially thank A. Franklin for his invitation to participate in the 1999 spotted

owl workshop and for his encouragement to publish results of some of our bias

investigations conducted at the workshop.

REFERENCES

Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C. & Pollock, K. P. (1987) Design and

Analysis of Methods for Fish Survival Experiments Based on Release- recapture (Am. Fish. Soc. Monogr.

5, 437 pp.).

Carothers, A. D. (1973) The eþ ects of unequal catchability on Jolly- Seber estimates, B iometr ics, 29,

pp. 79- 100.

Carothers, A. D. (1979) Quantifying unequal catchability and its e þ ect on survival estimates in an

actual population, J. Anim. Ecol., 48, pp. 863- 869.

Cormack, R. M . (1964) Estimates of survival from the sighting of marked animals, B iometr ika, 51,

pp. 429 - 438.

Franklin, A. B., Burnham, K . P., White, G. C., Anthony, R. G., Forsman, E. D., Schwarz, C.,

N ichols, J. D. & H ines, J. E. (1999) Range-wide Status and Trends in Northern Spotted Owl Populations,

71 pp. (Corvallis, OR, Oregon Cooperative Fish and Wildlife Research Unit).

G ilbert, R. O. (1973) Approximations of the bias in the Jolly- Seber capture- recapture model,

B iometr ics, 29, pp. 501- 526.

Jolly, G. M. (1965) Explicit estimates from capture- recapture data with both death and immigrationÐ

stochastic model, B iometrika, 52, pp. 225- 247.

Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. (1992) Modelling survival and

testing biological hypotheses using marked animals: a uni® ed approach with case studies, Ecol.

Monogr., 62, pp. 67 - 118.

N ichols, J. D., H ines, J. E., Lebreton, J.-D. & Pradel, R. (2000 ) The relative contributions of

demographic components to population growth: a direct estimation approach based on reverse-time

capture- recapture, Ecology, 81, in press.

N ichols, J. D., Noon, B. R., Stokes, S. L. & H ines, J. E. (1981 ) Remarks on the use of mark-

recapture methodology in estimating avian population size, pp. 121 - 136. In: C. J. Ralph & M. J.

Scott (Eds), Estimating the Numbers of Terrestrial B irds (Lawrence, KS, Allen Press).

N ichols, J. D., H ines, J. E. & Pollock, K . H . (1984) Eþ ects of permanent trap response in capture

probability on Jolly- Seber capture- recapture model estimates, J. Wildl. Manage., 48, pp. 289 - 294.

Pollock, K. H ., Solomon, D. L. & Robson, D. S. (1974) Tests for mortality and recruitment in a

K-sample tag- recapture experiment, B iometr ics, 30, p. 77- 87.



Potential bias in the estimation of k 587

Pollock, K. H., Nichols, J. D., Brownie, C. & H ines, J. E. (1990) Statistical Inference for Capture-

recapture Experiments (Wildlife Monographs, No. 107).

Pradel, R. (1996) Utilizaton of capture- mark- recapture for the study of recruitment and population

growth rate, B iometr ics, 52, pp. 703- 709.

Seber, G. A. F. (1965 ) A note on the multiple-recapture census, B iometrika, 52, pp. 249- 259.

Seber, G. A. F. (1982) The Estimation of Animal Abundance and Related Parameters (New York,

Macmillan).

Skalski, J. R. & Robson, D. S. (1992) Techniques for Wildlife Investigations: Design and Analysis of

Capture Data (San Diego, CA, Academic Press).

White, G. C. & Burnham, K. P. (1999 ) Program MARK: survival rate estimation from both live and

dead encounters, B ird Study, 46, pp. S120- 139.


